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A specially designed high-throughput experimentation facility,
used for the highly effective exploration of electrolyte formula-
tions in composition space for diverse battery chemistries and
targeted applications, is presented. It follows a high-throughput
formulation-characterization-optimization chain based on a set
of previously established electrolyte-related requirements. Here,
the facility is used to acquire large dataset of ionic conductiv-
ities of non-aqueous battery electrolytes in the conducting salt-
solvent/co-solvent-additive composition space. The measured
temperature dependence is mapped on three generalized
Arrhenius parameters, including deviations from simple acti-

vated dynamics. This reduced dataset is thereafter analyzed by
a scalable data-driven workflow, based on linear and Gaussian
process regression, providing detailed information about the
compositional dependence of the conductivity. Complete
insensitivity to the addition of electrolyte additives for other-
wise constant molar composition is observed. Quantitative
dependencies, for example, on the temperature-dependent
conducting salt content for optimum conductivity are provided
and discussed in light of physical properties such as viscosity
and ion association effects.

Introduction

High-throughput (HT) strategies allow researchers to perform
multiple experiments within a relatively short time in parallel to
accelerate material discovery process.[1,2] Such strategies are
generally achieved by using rapid automation tools including a
large combination of material variables.[3] These methods are
predominantly used in biological and pharmaceutical

industries.[4–7] Further HT methods are nowadays used in other
industries beyond pharma.[8–11] Recent efforts have been made
to use HT methods to discover and optimize materials for
battery cell chemistries.[12,13] High-throughput experimentation
(HTE) systems represent a highly valuable tool for accelerating
the search towards advanced and optimized battery materials
and with it, electrolyte formulations for given cell chemistry
candidates, electrode-electrolyte interfaces, overall cell perform-
ance, safety and cost. Recently, computational screening
methodologies have been used to effectively support the
battery material discovery process and a combinatorial ap-
proach of experiments and computational approach has been
discussed as a way forward in the battery material discovery
process.[14,15] Data driven models are predominantly used to
extract knowledge and insights from noisy, structured and
unstructured datasets.[16–19] Optimization of datasets (features,
number of samples) are required to increase the efficiency of
such models.[20–23] Currently artificial intelligence (AI) and
machine learning algorithms are transforming material discov-
ery processes, especially in battery science.[24,25]

The performance of all batteries (including Li-ion analogues)
is governed by the nature of electrolytes used. The ionic
conductivity in a liquid electrolyte, for instance, co-determines
the rate of the charging process. Organic solvent-based electro-
lyte formulations are of central relevance and still considered as
state-of-the-art.[26,27] Common electrolyte formulations consist of
lithium conducting salt such as lithium hexafluorophosphate
(LiPF6) and solvent mixtures comprising cyclic carbonates like
ethylene carbonate (EC) and propylene carbonate (PC) with
linear organic carbonates like dimethyl carbonate (DMC), ethyl
methyl carbonate (EMC) and diethyl carbonate (DEC) and
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provide desirable electrochemical properties for Li-ion
batteries.[28–33]

Results and Discussion

Here we perform HT impedance spectroscopic experiments on
LiPF6-based electrolyte formulations containing EC and EMC as
solvent mixture and vinylene carbonate (VC) as functional
additive/co-solvent to determine ionic conductivities of result-
ing electrolyte formulations and develop a data driven model
to predict ionic conductivities for variable electrolyte composi-
tions. The established conductivity module is quite flexible in
nature and can be extended to other liquid-based electrolyte
classes including sodium, potassium, magnesium, calcium
chemistries with wide variety of conducting salts, solvents/co-
solvents and functional additives. All data are extracted from HT
experiments with conducting salt, solvent/co-solvent, additive
compositions and temperature as features and ionic conductiv-
ity as target quantity. The electrolyte module of the HTE system,

developed in-house, is composed of two independent, however
well-connected units under a N2 atmosphere (Figure 1A). In
regard to the electrolyte formulation, all considered electrolyte
components have to be manually introduced to the HTS System
I through the bridging chamber in which the corresponding
containers are being filled up with electrolyte components.
From this point, the system, governed by Laboratory Informa-
tion Management System (LIMS), formulates electrolytes and
consequently fills conductivity cells with corresponding electro-
lyte formulations in a fully automated way. After initial
programming and filling of the dosing units with electrolyte
components, the HTE unit fully automatically conducts fast and
systematic formulation of up to 96 different liquid electrolytes
per working day. The system is capable of handling a wide
variety of lithium conducting salts, solvents/co-solvents and
(multi)-functional additives as electrolyte components in solid
and liquid form that can be combined with respect to their
presence and amount in a considered electrolyte formulation.

The robotic platform was developed by combining multiple
functionalities to an integrated platform system. It is composed

Figure 1. A) Electrolyte module featuring an automated HT system for electrolyte formulation and conductivity cell assembly with bridging chamber used for
storage and preparation activities. B) Flow chart of an automated electrolyte formulation to conductivity determination and analysis sequence.
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of 21 stations enabling required gravimetric solid and liquid
dispensing of selected electrolyte components with high
accuracy (0.026% for solids and 0.024% for liquids), vial closing,
vial mixing and heating and vial barcode labeling steps within
the electrolyte formulation workflow (Figure 1B). A data matrix
barcode contains all relevant information regarding the electro-
lyte composition and components like their amount, supplier,
date of formulation and is easily readable by a smartphone app.
The end-product is a cyclic olefin polymer vial, crimped with
electrolyte resistant needle piercing septum or a screw cap
aluminum vial and contains a maximum 10 mL of electrolyte
formulation. Within the HTE unit, an automated filling of
conductivity cells with electrolyte is performed after optional
visual examination of the electrolytes as well. The second unit
of the electrolyte module is the bridging chamber, fused for
preparation and storage purposes, positioned in the glovebox
under N2 atmosphere.

For the electrolyte conductivity determination by means of
electrochemical impedance spectroscopy (EIS), a conductivity
module consisting of 96 measuring cells was developed.
Considered electrolyte formulations were dispensed into dis-
posable Eppendorf Safe-Lock Tubes in small sample quantities

(750 μL) by the HTE robotic system in the glovebox under N2

atmosphere. In-house developed electrodes were thereafter
immersed in the electrolytes (Figure 2A(a)). These electrodes as
measuring probes deliver reproducible results regardless of the
immersion depth in the electrolyte or the sample container
geometry in the impedance measurements.[34] Eight conductiv-
ity cells were placed on a small rack (Figure 2A(b)) and three of
the small racks were positioned on a big rack (Figure 2A(c)) for
a total of 24 conductivity cells per big rack. Four big racks
resulted in a total of 96 conductivity cells. To obtain the data on
the internal resistance and conductivity of the electrolyte
formulations, a Metrohm Autolab potentiostat/galvanostat with
8×12-channel multiplexer was used. The multiplexer, based on
a particularly powerful single-board micro-controller, is capable
of multiplexing each of the 12 potentiostat/galvanostat chan-
nels 8-fold, thus resulting in 96 controllable channels (Fig-
ure 2A(d)). The assembled conductivity cells have to be
manually taken out of the HTS System I and placed in the
climate chamber with a 2-hour equilibration period for any
given temperature prior to each measurement. Measurements
were conducted in the temperature range from 0 °C to 60 °C in
10 °C increments. Once the potentiostat is connected to the

Figure 2. A) Conductivity module comprising: a) in-house developed coaxial impedance electrode and Eppendorf tube b) small rack containing 8 electrodes c)
big rack with 24 conductivity cells and d) potentiostat/galvanostat with 8×12-channel multiplexer and temperature chamber. B) Schematic overview of the
LIMS-modules interaction workflow.
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conductivity cells and programmed with a temperature se-
quence by the operator, the setup requires no further user
input.

Both electrolyte formulation and conductivity modules of
the HTE facility are operated independently by a customized
instance of the LIMS adjusted to the specific system by the
Quality Systems International (QSI) GmbH. The value chain,
governed by the LIMS, is depicted in Figure 2B. As the system’s
central entity, this software, flexible in nature, also serves as a
material and data archive that ensures data provenance and
enables backtracking of experiments. Materials data include
specific identifiers (supplier, batch number, purity etc.) whereas
experimental data consists of test protocols and relevant
experimental parameters such as temperature. Besides saving
the raw experimental data, the system is capable of processing
the raw results and bundling them with relevant metadata
(relevant details on the used electrolyte) into a machine-
readable output format in order to provide users with all
available information on a given experiment.

For the experiments reported in this work, the applied EC to
EMC ratios were 3 :7, 3 : 2 and 3 :1 by weight with a VC content
between 0 and 30 wt% with respect to EC and EMC. At the
same time, the concentration of LiPF6 was varied between 0.2
and 2.3 mol/kg. Exact amounts of all components for each
electrolyte formulation can be found in the Supporting
Information (Table S1 and Table S2). Considering 7 different
temperatures and repetition of each measurement for at least 3
times in respect to reproducibility for each electrolyte formula-
tion, the total number of experimentally obtained data points
amounted to 1200.

For data analysis, a molar description of the electrolyte via
xLiPF6 LiPF6 · (1-xLiPF6)[xVC VC · (1-xVC) [xEC EC · (1-xEC) EMC]] was used.
In this representation, the EC/EMC ratio does not change under
variation of the VC content, xVC. The ranges were chosen to
cover a broad section of the composition space where feasible
electrolyte formulations can be expected (i. e., homogeneous
solutions). However, in some formulations with high EC and
LiPF6 content, crystal formation occurred, rendering these
formulations unusable (see Figures S3–S7). NMR analysis re-
vealed that the crystals taken from one of the formulations only
consist of LiPF6 and EC, implying that the crystallizing com-
pound is likely Li(EC)4PF6.

[35] Some electrolyte formulations with
low LiPF6 and high EC content showed anomalous conductivity
values at low temperatures, indicating freezing of EC (see
Figure S5).

To provide a deeper understanding of HT datasets, con-
ductivities are transformed according to the generalized
Arrhenius fit (X= (xLiPF6, xVC, xEC)) [Eq. (1)]:

logs X; Tð Þ ¼ S0 Xð Þ � S1 Xð Þ* b � b0ð Þ � S2 Xð Þ* b � b0ð Þ2 (1)

with the inverse onset temperature b0. The surrogate models
for the description of the Si Xð Þ are formulated in terms of
polynomials. The models as well as the choice of the order, also
in the context of the available experimental data sets, are
discussed in the methods section of Supporting Information. Of
particular relevance is the information content of the in-sample

and out-of-sample error as a function of the size of the training
set (see Supporting Information V). For the analysis we use
dimensionless parameters. In particular, we choose b ¼ 1000=T
where T is expressed in Kelvin [K]. These parameters have a
direct interpretation: exp S0½ ðXÞ� corresponds to the conductivity
at the onset temperature. The activation energy, evaluated at
the onset temperature, is proportional to S1 Xð Þ. Finally, S2 Xð Þ
reflects possible deviations from pure Arrhenius behavior,
showing up as a curvature. This transformation with implicit
temperature description reduces the number of datasets and
the corresponding parameters to 3 and all of them have a direct
physical interpretation, providing additional information as
compared to a polynomial fit of ionic conductivity.[36,37]

The choice of the onset temperature is obtained from the
correlation of conductivity and activation energy at a given
temperature. At low temperatures both quantities are strongly
correlated, since high activation energies show very low
conductivities at low temperatures and for the present set of
electrolyte compositions this correlation diminishes at approx-
imately 40 °C, as shown in Figure S7.

Here we use linear regression (LR) and Gaussian process
regression (GPR) models to analyze the acquired HT electrolyte
conductivity datasets. GPR directly provides confidence intervals
for the predictions, whereas for LR, we use a bootstrapping
process to account for uncertainties in predictions.[17,38–42] The
features comprise LiPF6, VC, and EC concentrations and the
predicted quantity is the logarithm of the ionic conductivity of
the resulting electrolyte. Both LR (R2 score- 0.986) and GPR (R2

score- 0.987) show similar prediction accuracy for experimental
ionic conductivities which to a large extent are determined by
the experimental errors (see Supporting Information V.1)

The data driven workflow is independent of the nature of
the dataset, thus can provide a leeway for larger dimensions of
features like introduction of multiple co-solvent, additives or
conducting salt mixtures. This increased dimensionality of
electrolyte formulations increases the complexity of empirical
models which are generally used to interpret the relevance of
electrolyte compositions on ionic conductivity.[36,37,43] Further-
more, data driven models provide robust error estimates of the
predicted data, which are not provided by empirical fits.[17,36,37,44]

Thus, these surrogate models provide an effective way to
interpret acquired HT datasets independent of feature dimen-
sions. Since both LR and GPR show similar results, we use LR to
understand feature trends (xLiPF6, xVC, xEC) on ionic conductivity
for convenience. The trends with GPR are shown in Figure S13.

The conductivity at onset temperature S0 Xð Þ tends to
increase with LiPF6 content with a peak close to ~(0.07–0.09)
and then drops for higher LiPF6 content (Figure 3I, left). A
significant dependence on the EC content is observed. Starting
from the low LiPF6 content, the initial rise in electrolyte
conductivity is typically attributed to an increasing number of
dissociated ions per unit volume whereas the subsequent
reduction of conductivity reflects the increasing viscosity. The
presence of maximum conductivity values upon variation of the
conducting salt content has been observed for other lithium-
based electrolytes as well.[36,37,43–47] In contrast, the activation
energy term S1 Xð Þ and the curvature term S2 Xð Þ show a simple
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linear increase with increasing conducting salt content. Higher
values are observed for larger EC contents. Further, the
resulting influence of temperature on the conductivity is shown
in (Figure 3II A). The peak of the conductivity shifts to higher
LiPF6 content with increasing temperature.

When analyzing the dependence on EC content, the ionic
conductivity at the onset temperature increases with increasing
EC content for lower LiPF6 content (xLiPF6=0.05), whereas the
trend reverses at higher conducting salt content (xLiPF6=0.16).
This directly shows the presence of significant LiPF6 and EC
content contributions to the conductivity at the onset temper-
ature which furthermore are coupled (see Supporting Informa-
tion Table S3). Thus, there is a strong impact of the LiPF6

content on the EC dependent activation energy and curvature
(Figure 3I, right). Since the activation energy is just shifted, the
impact is not coupled. Also, the dependence on the LiPF6
concentration is more relevant for the transport properties than
the replacement of EMC by EC and, for example, the resulting
variation of the dielectric constant.[48,49] Consistent with the
properties of the activation energy in Figure 3I right, the small
peak in conductivity shifts to smaller values of the EC content
at lower temperatures.[36]

Finally, the VC content does not play any role in bulk ionic
conductivity for fixed EC/EMC ratio as shown in Figure 3II C (see
also Table S6). This is a remarkable result, given the similar ring

Figure 3. I) Predictions for the generalized Arrhenius fitting parameters Si Xð Þ (S0; S1; S2) with respect to xLiPF6 (left) and xEC content (both for xVC=0.0) (right). II)
The change of ionic conductivity with LiPF6 content (A) for fixed [(xVC=0.0, xEC=0.336)] EC content (B) for fixed [(xVC=0.0, xLiPF6=0.086)] VC content (C) for
fixed [(xEC=0.336, xLiPF6=0.087)] at different temperatures are shown below. All the results are shown for the LR model.
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structure of EC and VC. However, VC is known to play a pivotal
role in electrolyte jelectrode interfacial interactions.[50,51]

In Figure 4A, the HTE obtained ionic conductivities, log(s),
for fixed EC/EMC ratio, are compared with other experimental
values for the conductivity. The obtained results are compatible
within the fluctuations. Furthermore, in Figure 4B we show the
logarithm of the molar conductivities and in Figure 4C the
activation energies, incorporating data for the viscosity[37,43] and
binary diffusivity.[37] Remarkably, the logarithm of the molar
conductivities (Figure 4B) as well as the activation energies
(Figure 4C) basically display a linear behavior in the whole
conducting salt concentration regime. This linear behavior has
interesting consequences. As shown in Supporting Information
V.6 it allows one to predict the conducting salt content at which
the conductivity displays a maximum as a function of temper-
ature, yielding xmax bð Þ ¼

0:0833
1þ0:76ðb� b0Þ

. The estimations in Figure 4A,
based on this relation, indeed show very good agreement with
the actual conductivities.

Thus, after removing the trivial impact of an increasing
number of ions, there are no indications of changing mecha-
nisms at the maximum. Furthermore, the conducting salt
dependence of the molar conductivity at fixed temperature as
well as its activation energy is very similar to the respective
observables, based on the viscosity. The remaining minor
systematic deviations of the activation energies of the con-
ductivity to the viscosity and diffusivity in Figure 4C indicate
that the lowering of the conductivity as compared to the
Nernst–Einstein prediction via pair formation is somewhat less
pronounced for lower temperatures. The latter has been also
reported for other systems.[52]

Conclusion

The HT experimentation facility, in general, has the potential to
predict a range of vital electrolyte properties and to establish a
formulation-characterization-optimization evaluation chain. This
involves the discovery of novel and the optimization of existing
liquid electrolyte formulations for diverse cell chemistries by
using a filtration effect based on the previously established set
of requirements for a targeted application. From a first round of
preselected, automated experiments,[5,8,9,53–55] lead/hit candi-
dates can be selected and characterized further in subsequent
steps. The resulting optimization process may involve the
chosen concentrations or the use of different components.

In summary, we propose an in-house developed HT
approach to conduct automated impedance experiments in
parallel for different electrolyte formulation to attain optimal
ionic conductivities. This approach considerably reduces the
amount of time required for performing experiments manually
and enables accelerated electrolyte discovery process for
battery applications. Data driven models, based on 1200
experimentally acquired data points are used to analyze and
predict ionic conductivities and can further be utilized to
automatically identify outliers and thus increase the robustness
of HT experiments. It is shown that considered surrogate
models predict ionic conductivities close to experimental
accuracies and provide reliable estimates at very low cost
compared to actual experiments. The flexibility of the surrogate
models with regard to statistical uncertainties provides an
effective way to study feature trends on ionic conductivity
compared to standard empirical models. The transformed data-
driven model provides a physical interpretation of trends of
electrolyte compositions on ionic conductivity. Furthermore,
additional microscopic simulations and implementation of

Figure 4. Comparison of different data for the 30 :70 wt. EC:EMC system (no VC). (A) The LR conductivity in comparison to the data from Ref. [43] (spheres)
and Ref. [37] (squares) at two different temperatures. The broken lines indicate the estimation of the maxima for both temperatures, based on the insight
from (B) and (C). For details of the prediction process, see Supporting Information. (B) Comparison of different observables P as a function of conducting salt
content at T=25 °C. Specifically, we show the LR prediction of the logarithm of the molar conductivity σ/x, the negative logarithm of the viscosity [cP] from
Ref. [43] (spheres) and the logarithm of diffusivity [10� 6 cm2/s] from Ref. [37] (squares). Also included is a linear fit of the logarithm of the molar LR
conductivity: � 0.56–5.21 xLiPF6 (black); as broken line. Due to the excellent agreement with the molar conductivity data, it is hardly visible. (C) Comparison of
the activation energies of the LR-based conductivity, the viscosity from Ref. [43] and the diffusivity from Ref. [37] for T=25 °C. The activation energy of the
conductivity has been fitted by 0.89+9.1 xLiPF6. The two latter activation energies have been estimated from the viscosity and diffusivity data at T=40 °C and
T=10 °C from Ref. [43], Ref. [37] respectively. The diffusivity data points at T=10 °C are estimated from interpolation of data at 12 °C and 2.5 °C as provided in
Ref. [37].
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closed loop optimization protocols, performed in parallel to the
experiments, can increase the efficiency and relative speedup of
HTE. This may complement the results from experiments and
data driven model, thereby obtaining a holistic understanding
of relevant electrolyte formulations. With this in line, important
physical and chemical additional insights can be gained.

Experimental Section

Electrolyte formulation

Lithium hexafluorophosphate (LiPF6), ethylene carbonate (EC), ethyl
methyl carbonate (EMC) and vinylene carbonate (VC) were
purchased from E-Lyte Innovations in battery grade purity. All
chemicals were used as received without further purification.
Considered electrolytes contain LiPF6 as conducting salt, a mixture
of EC and EMC as electrolyte solvents and VC as a functional
additive (co-solvent). The composition of the formulation was
altered in a systematic way by varying the concentration of only
one component and keeping all remaining components constant.
The LiPF6 concentration was allowed to vary between 0.2 mol/kg
and 2.3 mol/kg. The ratio of EC/EMC solvent mixture was varied
from 0.43 to 3.0 by weight. The concentration of VC was varied
between 0 and 30 wt% with respect to the solvents. In total, 56
electrolytes were fully automatically formulated by means of the
HTE system positioned in the glovebox (MBraun, H2O and O2<

1 ppm) under N2 atmosphere, of which 48 could be used for
conductivity determination. In the other cases, crystal formation
was either directly observed or deducted from recorded conductiv-
ity data. For exact compositions of all considered electrolyte
formulations see the Supporting Information.

Conductivity determination

All experiments were carried out under an inert atmosphere (Ar or
N2). Conductivity cells were filled and sealed via HTE system in the
glovebox (MBraun, H2O and O2<1 ppm). Cell constants were
determined with a 0.01 M solution of KCl at 20 °C (VWR, known
conductivity of 1.276 mScm1) and averaged over five measure-
ments. Disposable 2 mL Eppendorf Safe-Lock Tubes were used as
sample containers and filled with 750 μL of electrolyte each.
Impedance measurements were conducted on a Metrohm Autolab/
M204 potentiostat/galvanostat with 12 channels and 8-channel
multiplexer for a total of 96 channels in the range of 50 Hz to
20000 Hz using in-house developed electrodes.[34] The samples
were placed in a temperature chamber (Memmert TTC256, 0.1 °C
temperature setting accuracy) and each temperature was held for
2 h prior to measurement for equilibration. Obtained impedance
spectra were fitted using a model specified with set parameters for
resistors Rs and Rp, as well as for the constant phase element (CPE)
with the Metrohm Nova software. The fitting model R1+R2/Q was
used as standard. Due to the use of ion-blocking electrodes, R2 can
be approximated to infinite and the model simplifies to R1+Q,
which only contains the essential resistance R1 for the automated
observation of the total ionic conductivity of the considered
electrolyte formulations. The fit was carried out after each addi-
tional measuring point.

Data-driven analysis

All data are extracted from HT experiments with conducting salt
(LiPF6), solvent (EC), additive (VC) compositions (X= (x1,x2,x3)) and
temperature (T) as features and ionic conductivity as target

quantity. For details on applied surrogate models and GPR results
see the Supporting Information.
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